On Chern-Moser Normal Forms of Strongly Pseudoconvex Hypersurfaces with High-Dimensional Stability Group

نویسنده

  • A. V. Isaev
چکیده

We explicitly describe germs of strongly pseudoconvex non-spherical real-analytic hypersurfaces M at the origin in Cn+1 for which the group of local CR-automorphisms preserving the origin has dimension d0(M) equal to either n 2 − 2n + 1 with n ≥ 2, or n2 − 2n with n ≥ 3. The description is given in terms of equations defining hypersurfaces near the origin, written in the Chern-Moser normal form. These results are motivated by the classification of locally homogeneous Levi non-degenerate hypersurfaces in C3 with d0(M) = 1, 2 due to A. Loboda, and complement earlier joint work by V. Ezhov and the author for the case d0(M) ≥ n 2 − 2n + 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Normal Forms for Levi-nondegenerate Hypersurfaces

In this paper we construct a large class of new normal forms for Levi-nondegenerate real hypersurfaces in complex spaces. We adopt a general approach illustrating why these normal forms are natural and which role is played by the celebrated Chern-Moser normal form [CM74]. The latter appears in our class as the one with the ”maximum normalization” in the lowest degree. However, there are other n...

متن کامل

Infinitesimal Cr Automorphisms of Hypersurfaces of Finite Type in C2

We study the Chern-Moser operator for hypersurfaces of finite type in C2. Analysing its kernel, we derive explicit results on jet determination for the stability group, and give a description of infinitesimal CR automorphisms of such manifolds.

متن کامل

Normal Forms of Real Hypersurfaces with Nondegenerate Levi Form

We present a proof of the existence and uniqueness theorem of a normalizing biholomorphic mapping to Chern-Moser normal form. The explicit form of the equation of a chain on a real hyperquadric is obtained. There exists a family of normal forms of real hypersurfaces including Chern-Moser normal form. 0. Introduction Let M be an analytic real hypersurface with nondegenerate Levi form in a comple...

متن کامل

Local Equivalence of Symmetric Hypersurfaces in C

The Chern-Moser normal form and its analog on finite type hypersurfaces in general do not respect symmetries. Extending the work of N. K. Stanton, we consider the local equivalence problem for symmetric Levi degenerate hypersurfaces of finite type in C2. The results give complete normalizations for such hypersurfaces, which respect the symmetries. In particular, they apply to tubes and rigid hy...

متن کامل

Se p 20 07 LOCAL EQUIVALENCE OF SYMMETRIC HYPERSURFACES IN

The Chern-Moser normal form and its analog on finite type hypersurfaces in general do not respect symmetries. Extending the work of N. K. Stanton, we consider the local equivalence problem for symmetric Levi degenerate hypersurfaces of finite type in C. The results give for all such hypersurfaces a complete normalization which respects the symmetries. In particular, they apply to tubes and rigi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007